3 research outputs found

    Modelling and verifying dynamic access control policies in workflow-based healthcare systems

    Get PDF
    Access control system is an important component to protect patients’ information from abuse in a health care system. It is a major concern in the management, design, and development of healthcare systems. Designing access control policies for healthcare systems is complicated due to the dynamic and inherent complexity of the tasks performed by the healthcare personnel. Permissions in access control systems are usually granted on the basis of static policies. However, static policies are not enough to cope with various situations such as emergencies. Most often, the Break-the-glass mechanism is used to bypass static policies to handle emergency situations. Since healthcare systems are critical systems, where errors can be very costly in terms of lives, quality of life, and/or dollars, it is crucial to identify discrepancies between policy specifications and their intended function to implement correctly a flexible access control system. Formal verifications are necessary for exhaustive verification and validation of policy specifications to ensure that the policy specifications truly encapsulate the desires of the policy authors. We present a verifiable framework to enact a dynamic access control model by integrating the ANSI/INCTIS RBAC Reference Model in a workflow and an approach for property verifications of the access control model. Access control policies are expressed by the formal semantics of a model checker and properties are verified by the DiVinE model checker

    Model checking ontology-driven reasoning agents using strategy and abstraction

    Get PDF
    We present a framework for the modelling, specification and verification of ontology-driven multi-agent rule-based systems (MASs). We assume that each agent executes in a separate process and that they communicate via message passing. The proposed approach makes use of abstract specifications to model the behaviour of some of the agents in the system, and exploits information about the reasoning strategy adopted by the agents. Abstract specifications are given as Linear Temporal Logic (LTL) formulas which describe the external behaviour of the agents, allowing their temporal behaviour to be compactly modelled. Both abstraction and strategy have been combined in an automated model checking encoding tool Tovrba for rule-based multi-agent systems which allows the system designer to specify information about agents' interaction, behaviour, and execution strategy at different levels of abstraction. The Tovrba tool generates an encoding of the system for the Maude LTL model checker, allowing properties of the system to be verified

    A formal approach to modelling and verifying resource-bounded context-aware agents

    No full text
    There has been a move of context-aware systems into safety-critical domains including healthcare, emergency scenarios, and disaster recovery. These systems are often distributed and deployed on resource-bounded devices. Therefore, developing formal techniques for modelling and designing context-aware systems, verifying requirements and ensuring functional correctness are major challenges. We present a framework for the formal representation and verification of resource-bounded context-aware systems. We give ontological representation of contexts, translate ontologies to a set of Horn clause rules, based on these rules we build multi-agent context-aware systems and encode them into Maude specification, we then verify interesting properties of such systems using the Maude LTL model checker. © 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
    corecore